Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Multiagent DDPG-Based Deep Learning for Smart Ocean Federated Learning IoT Networks

Authors
Kwon, DohyunJeon, JoohyungPark, SoohyunKim, JoongheonCho, Sungrae
Issue Date
10월-2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Training; Wireless communication; Computational modeling; Resource management; Data models; Oceans; Adaptation models; Deep reinforcement learning; federated learning (FL); smart ocean networks
Citation
IEEE INTERNET OF THINGS JOURNAL, v.7, no.10, pp.9895 - 9903
Indexed
SCIE
SCOPUS
Journal Title
IEEE INTERNET OF THINGS JOURNAL
Volume
7
Number
10
Start Page
9895
End Page
9903
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52592
DOI
10.1109/JIOT.2020.2988033
ISSN
2327-4662
Abstract
This article proposes a novel multiagent deep reinforcement learning-based algorithm which can realize federated learning (FL) computation with Internet-of-Underwater-Things (IoUT) devices in the ocean environment. According to the fact that underwater networks are relatively not easy to set up reliable links by huge fading compared to wireless free-space air medium, gathering all training data for conducting centralized deep learning training is not easy. Therefore, FL-based distributed deep learning can be a suitable solution for this application. In this IoUT network (IoUT-Net) scenario, the FL system needs to construct a global learning model by aggregating the local model parameters that are obtained from individual IoUT devices. In order to reliably deliver the parameters from IoUT devices to a centralized FL machine, base station like devices are needed. Therefore, a joint cell association and resource allocation (JCARA) method is required and it is designed inspired by multiagent deep deterministic policy gradient (MADDPG) to deal with distributed situations and unexpected time-varying states. The performance evaluation results show that our proposed MADDPG-based algorithm achieves 80% and 41% performance improvements than the standard actor-critic and DDPG, respectively, in terms of the downlink throughput.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Joong heon photo

Kim, Joong heon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE