Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics

Authors
Semenov, Alexey N.Lugovtsov, Andrei E.Shirshin, Evgeny A.Yakimov, Boris P.Ermolinskiy, Petr B.Bikmulina, Polina Y.Kudryavtsev, Denis S.Timashev, Peter S.Muravyov, Alexei V.Wagner, ChristianShin, SehyunPriezzhev, Alexander V.
Issue Date
Oct-2020
Publisher
MDPI
Keywords
fibrinogen macromolecules; RBC membrane; optical (laser) tweezers; flow cytometry; glycoproteins IIbIIIa inhibition; microfluidics
Citation
BIOMOLECULES, v.10, no.10
Indexed
SCIE
SCOPUS
Journal Title
BIOMOLECULES
Volume
10
Number
10
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52610
DOI
10.3390/biom10101448
ISSN
2218-273X
Abstract
An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or alpha II beta beta 3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets' aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells' aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Se hyun photo

Shin, Se hyun
College of Engineering (Department of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE