Detailed Information

Cited 4 time in webofscience Cited 5 time in scopus
Metadata Downloads

Iterative Label Denoising Network: Segmenting Male Pelvic Organs in CT From 3D Bounding Box Annotations

Authors
Wang, ShuaiWang, QianShao, YeqinQu, LiangqiongLian, ChunfengLian, JunShen, Dinggang
Issue Date
10월-2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Image segmentation; Training; Three-dimensional displays; Biological systems; Computed tomography; Noise reduction; Biomedical imaging; Image Segmentation; Bounding Box Annotation; Weakly Supervised Learning; Fully Convolutional Network (FCN); Pelvic Organ; CT
Citation
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.67, no.10, pp.2710 - 2720
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume
67
Number
10
Start Page
2710
End Page
2720
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/52620
DOI
10.1109/TBME.2020.2969608
ISSN
0018-9294
Abstract
Obtaining accurate segmentation of the prostate and nearby organs at risk (e.g., bladder and rectum) in CT images is critical for radiotherapy of prostate cancer. Currently, the leading automatic segmentation algorithms are based on Fully Convolutional Networks (FCNs), which achieve remarkable performance but usually need large-scale datasets with high-quality voxel-wise annotations for full supervision of the training. Unfortunately, such annotations are difficult to acquire, which becomes a bottleneck to build accurate segmentation models in real clinical applications. In this paper, we propose a novel weakly supervised segmentation approach that only needs 3D bounding box annotations covering the organs of interest to start the training. Obviously, the bounding box includes many non-organ voxels that carry noisy labels to mislead the segmentation model. To this end, we propose the label denoising module and embed it into the iterative training scheme of the label denoising network (LDnet) for segmentation. The labels of the training voxels are predicted by the tentative LDnet, while the label denoising module identifies the voxels with unreliable labels. As only the good training voxels are preserved, the iteratively re-trained LDnet can refine its segmentation capability gradually. Our results are remarkable, i.e., reaching similar to 94% (prostate), similar to 91% (bladder), and similar to 86% (rectum) of the Dice Similarity Coefficients (DSCs), compared to the case of fully supervised learning upon high-quality voxel-wise annotations and also superior to several state-of-the-art approaches. To our best knowledge, this is the first work to achieve voxel-wise segmentation in CT images from simple 3D bounding box annotations, which can greatly reduce many labeling efforts and meet the demands of the practical clinical applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE