Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Ductile tearing analyses of cracked TP304 pipes using the multiaxial fracture strain energy model and the Gurson-Tvergaard-Needleman model

Full metadata record
DC Field Value Language
dc.contributor.authorWang, Tao-
dc.contributor.authorWen, Jian-Feng-
dc.contributor.authorKim, Yun-Jae-
dc.contributor.authorTu, Shan-Tung-
dc.date.accessioned2021-08-30T12:57:58Z-
dc.date.available2021-08-30T12:57:58Z-
dc.date.created2021-06-19-
dc.date.issued2020-10-
dc.identifier.issn8756-758X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/52626-
dc.description.abstractDuctile crack growth behaviours of TP304 pipes containing different circumferential defects were investigated in the study. Finite element (FE) damage analysis of the ductile fracture was carried out based on an uncoupled multiaxial fracture strain energy (MFSE) model with only two model parameters, which can be calibrated by data from tensile tests and fracture toughness tests. For the purpose of comparison, the Gurson-Tvergaard-Needleman (GTN) model was also employed in the FE damage analysis. It is observed that the MFSE model can reproduce the ductile tearing experiments as excellently as the GTN model does. Despite its simplicity, the MFSE model can reasonably predict the magnitudes of the crack initiation load and maximum load, the load-line displacement, the crack mouth opening displacement, the crack extension and the crack profiles in the full-scale cracked pipe tests.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectCOHESIVE ZONE PARAMETERS-
dc.subjectVOID GROWTH-
dc.subjectSIMULATION-
dc.subjectFAILURE-
dc.subjectRUPTURE-
dc.subjectPREDICTION-
dc.subjectINITIATION-
dc.subjectTENSION-
dc.subjectSHEAR-
dc.titleDuctile tearing analyses of cracked TP304 pipes using the multiaxial fracture strain energy model and the Gurson-Tvergaard-Needleman model-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Yun-Jae-
dc.identifier.doi10.1111/ffe.13311-
dc.identifier.scopusid2-s2.0-85089249272-
dc.identifier.wosid000558066900001-
dc.identifier.bibliographicCitationFATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, v.43, no.10, pp.2402 - 2415-
dc.relation.isPartOfFATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES-
dc.citation.titleFATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES-
dc.citation.volume43-
dc.citation.number10-
dc.citation.startPage2402-
dc.citation.endPage2415-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCOHESIVE ZONE PARAMETERS-
dc.subject.keywordPlusVOID GROWTH-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusFAILURE-
dc.subject.keywordPlusRUPTURE-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusINITIATION-
dc.subject.keywordPlusTENSION-
dc.subject.keywordPlusSHEAR-
dc.subject.keywordAuthordamage mechanics-
dc.subject.keywordAuthorductile fracture-
dc.subject.keywordAuthorfinite element method-
dc.subject.keywordAuthorGurson-Tvergaard-Needleman model-
dc.subject.keywordAuthormultiaxial fracture strain energy model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Jae photo

Kim, Yun Jae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE