Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mussel Inspired Highly Aligned Ti3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability

Authors
Lee, Gang SanYun, TaeyeongKim, HyerimKim, In HoChoi, JungwooLee, Sun HwaLee, Ho JinHwang, Ho SeongKim, Jin GooKim, Dae-WonLee, Hyuck MoKoo, Chong MinKim, Sang Ouk
Issue Date
22-9월-2020
Publisher
AMER CHEMICAL SOC
Keywords
dopamine; MXene; electromagnetic interference shielding; interface; assembly
Citation
ACS NANO, v.14, no.9, pp.11722 - 11732
Indexed
SCIE
SCOPUS
Journal Title
ACS NANO
Volume
14
Number
9
Start Page
11722
End Page
11732
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/53127
DOI
10.1021/acsnano.0c04411
ISSN
1936-0851
Abstract
Two-dimensional (2D) MXene has shown enormous potential in scientific fields, including energy storage and electromagnetic interference (EMI) shielding. Unfortunately, MXene-based material structures generally suffer from mechanical fragility and vulnerability to oxidation. Herein, mussel-inspired dopamine successfully addresses those weaknesses by improving interflake interaction and ordering in MXene assembled films. Dopamine undergoes in situ polymerization and binding at MXene flake surfaces by spontaneous interfacial charge transfer, yielding an ultrathin adhesive layer. Resultant nanocomposites with highly aligned tight layer structures achieve approximately seven times enhanced tensile strength with a simultaneous increase of elongation. Ambient stability of MXene films is also greatly improved by the effective screening of oxygen and moisture. Interestingly, angstrom thick polydopamine further promotes the innate high electrical conductivity and excellent EMI shielding properties of MXene films. This synergistic concurrent enhancement of physical properties proposes MXene/polydopamine hybrids as a general platform for MXene based reliable applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE