Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

IrCo nanocacti on Co(x)S(y)nanocages as a highly efficient and robust electrocatalyst for the oxygen evolution reaction in acidic media

Authors
Kim, JunKwon, TaehyunYu, SaeromChun, So YeonOh, AramKim, Jong MinBaik, HionsuckHam, Hyung ChulKim, Jin YoungKwak, KyungwonLee, Kwangyeol
Issue Date
28-8월-2020
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.12, no.32, pp.17074 - 17082
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
Volume
12
Number
32
Start Page
17074
End Page
17082
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/53722
DOI
10.1039/d0nr04622a
ISSN
2040-3364
Abstract
Developing highly efficient Ir-based electrocatalysts for the oxygen evolution reaction (OER) has been an important agenda in spearheading the water splitting technology. In this study, the synthesis of IrCo nanocacti on Co(x)S(y)nanocages (ICS NCs) is demonstrated by utilizing CoO@Co(x)S(y)nanoparticles as reactive nanotemplates. In addition to the high catalytic activities with a low overpotential of 281 mV at 10 mA cm(-2)and an outstanding mass activity of 1285 mA mg(Ir)(-1)at 1.53 V, the ICS NCs endure a prolonged OER test for over 100 h, greatly outperforming other previously reported Ir-based electrocatalysts. This work suggests that the unique hetero-nanostructure of IrCo/Co(x)S(y)inducesin situS doping during electrochemical oxidation and the beneficial effect of S doping on the enhanced stability of ICS NCs for the OER.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwang yeol photo

Lee, Kwang yeol
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE