Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Submillimeter MR fingerprinting using deep learning-based tissue quantification

Authors
Fang, ZhenghanChen, YongHung, Sheng-CheZhang, XiaoxiaLin, WeiliShen, Dinggang
Issue Date
8월-2020
Publisher
WILEY
Keywords
deep learning; MR fingerprinting; pediatric imaging; quantitative imaging
Citation
MAGNETIC RESONANCE IN MEDICINE, v.84, no.2, pp.579 - 591
Indexed
SCIE
SCOPUS
Journal Title
MAGNETIC RESONANCE IN MEDICINE
Volume
84
Number
2
Start Page
579
End Page
591
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/53883
DOI
10.1002/mrm.28136
ISSN
0740-3194
Abstract
Purpose To develop a rapid 2D MR fingerprinting technique with a submillimeter in-plane resolution using a deep learning-based tissue quantification approach. Methods A rapid and high-resolution MR fingerprinting technique was developed for brain T-1 and T-2 quantification. The 2D acquisition was performed using a FISP-based MR fingerprinting sequence and a spiral trajectory with 0.8-mm in-plane resolution. A deep learning-based method was used to replace the standard template matching method for improved tissue characterization. A novel network architecture (i.e., residual channel attention U-Net) was proposed to improve high-resolution details in the estimated tissue maps. Quantitative brain imaging was performed with 5 adults and 2 pediatric subjects, and the performance of the proposed approach was compared with several existing methods in the literature. Results In vivo measurements with both adult and pediatric subjects show that high-quality T-1 and T-2 mapping with 0.8-mm in-plane resolution can be achieved in 7.5 seconds per slice. The proposed deep learning method outperformed existing algorithms in tissue quantification with improved accuracy. Compared with the standard U-Net, high-resolution details in brain tissues were better preserved by the proposed residual channel attention U-Net. Experiments on pediatric subjects further demonstrated the potential of the proposed technique for fast pediatric neuroimaging. Alongside reduced data acquisition time, a 5-fold acceleration in tissue property mapping was also achieved with the proposed method. Conclusion A rapid and high-resolution MR fingerprinting technique was developed, which enables high-quality T-1 and T-2 quantification with 0.8-mm in-plane resolution in 7.5 seconds per slice.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE