Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Coagulation kinetics of round-sided disk particles under simple shear flow

Authors
Lee, Hyun SeopKim, Chong Youp
Issue Date
8월-2020
Publisher
KOREAN SOC RHEOLOGY
Keywords
binary collision; kinetic constant; van der Waals interaction; hydrodynamic interaction; collision mode
Citation
KOREA-AUSTRALIA RHEOLOGY JOURNAL, v.32, no.3, pp.173 - 181
Indexed
SCIE
SCOPUS
KCI
Journal Title
KOREA-AUSTRALIA RHEOLOGY JOURNAL
Volume
32
Number
3
Start Page
173
End Page
181
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54223
DOI
10.1007/s13367-020-0017-2
ISSN
1226-119X
Abstract
In this study a theoretical study is carried out on the binary collision of round-sided disks (RSD) suspended in a Newtonian fluid under a simple shear flow. RSD is composed of a disk part and a half-torus part which circumscribes the side of the disk. The diameter of the disk is fixed at 2 mu m while the thickness and the half-torus size are varied so that the aspect ratio varies from 0.13 to 0.288. The liquid viscosity is changed from 0.01 to 1 Pa center dot s. The hydrodynamic force and van der Waals force with the Hamaker constant of 1.06 x 10(-20)J are considered in tracking the position and the orientation of each particle. The Brownian motion is considered to be negligible. The collision of two particles initially separated by sufficiently a long distance is considered and the kinetic constant of coagulation is obtained by considering the presence of collision, the orientations of two particles and the flux of liquid flow. The result shows that the kinetic constant of coagulation is reduced to approximately 1/4 of the kinetic constant of non-interacting particles by the hydrodynamic interaction when the viscosity is 1 Pa center dot s. As collision modes, side-side and side-edge are considered. Side-side mode is found to be the dominant mode of collision for differing aspect ratio and differing viscosity of the liquid. The dominance of the side-side collision mode implies the formation of two-dimensional flocs in the shear flow.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE