Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Alternating-Current MXene Polymer Light-Emitting Diodes

Authors
Lee, SeokyeongKim, Eui HyukYu, SeunggunKim, HyerimPark, ChanhoPark, Tae HyunHan, HyowonLee, Seung WonBaek, SoyeonJin, WookyoungKoo, Chong MinPark, Cheolmin
Issue Date
Aug-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
alternating-current light-emitting diodes; polymer light-emitting diodes; solution-processed flexible electrodes; transparent MXene electrodes
Citation
ADVANCED FUNCTIONAL MATERIALS, v.30, no.32
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
30
Number
32
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54247
DOI
10.1002/adfm.202001224
ISSN
1616-301X
Abstract
MXenes (Ti3C2) are 2D transition-metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light-emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn-on voltage, current efficiency, and brightness of 2.1 V, 7 cd A(-1), and 12 547 cd m(-2), respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct-current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution-processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution-processed nanomaterial-based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE