Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Symmetry-protected spinful magnetic Weyl nodal loops and multi-Weyl nodes in 5d(n) cubic double perovskites (n=1, 2)

Authors
Song, Young-JoonLee, Kwan-Woo
Issue Date
27-7월-2020
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.102, no.3
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW B
Volume
102
Number
3
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54347
DOI
10.1103/PhysRevB.102.035155
ISSN
2469-9950
Abstract
Using both an effective three-band model and ab initio calculations, we have investigated various topological features in the cubic ferromagnetic 5d(1,)(2) systems showing large spin-orbit coupling (SOC): Ba2NaOsO6, Sr2SrOsO6, and Ba2BReO6 (B=Mg, Zn). In the presence of time-reversal symmetry (T), spinless Dirac nodal loops linked to each other at the W points appear in the mirror planes. Remarkably, breaking T leads to spinful magnetic Weyl nodal loops (MWNLs) that are robust even at large SOC and correlation strength U variation due to the combination of mirror symmetry and broken T. Additionally, there are two types of magnetic Weyl points with chiral charges vertical bar chi vertical bar = 1, 2 along the C-4v symmetry line, and another type-II MWNL encircling the zone center, that are dependent on U. Furthermore, the ferromagnetic Ba2ZnReO6 is an ideal half semimetal with MWNLs and magnetic Weyl nodes at the Fermi level without the interference of topologically trivial bulk states. These systems give rise to a remarkably large anomalous Hall conductivity sigma(xy) of up to 1160 (Omega cm)(-1). Our findings may apply widely for t(2g) systems with cubic (or slightly distorted) fcc-like structures.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Semiconductor Physics in Division of Display and Semiconductor Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Woo photo

Lee, Kwan Woo
과학기술대학 (디스플레이·반도체물리학부 반도체물리전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE