Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced Pollutant Adsorption and Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent

Authors
Suh, Min-JeongWeon, SeunghyunLi, RenyuanWang, PengKim, Jae-Hong
Issue Date
21-7월-2020
Publisher
AMER CHEMICAL SOC
Citation
ENVIRONMENTAL SCIENCE & TECHNOLOGY, v.54, no.14, pp.9106 - 9115
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume
54
Number
14
Start Page
9106
End Page
9115
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54360
DOI
10.1021/acs.est.0c01812
ISSN
0013-936X
Abstract
Efforts to combine photocatalysts with organic and inorganic adsorbents in engineered composite materials have been pursued extensively to harness sunlight for a green, sustainable regeneration of exhausted adsorbent. Recent advances combining benchmark photocatalyst, titanium dioxide (TiO2), with an inorganic adsorbent, layered double hydroxides (LDHs), have shown potential for an inorganic adsorbent-photocatalyst system but faced critical limitations in realizing practical applications: low adsorption capacity and slow, inefficient photocatalytic regeneration. This study presents an enhanced TiO2/LDH based material that demonstrates a dramatically increased efficiency for both decontamination through adsorption and subsequent solar, photocatalytic regeneration. The combination of delamination and high temperature treatment of LDH is utilized to drastically enhance the adsorption capacity toward model contaminant Methyl Orange to 1450-1459 mg/g, which is even higher than most commercial and lab-synthesized carbon-based adsorbents. Light-active plasmonic nanoparticles are employed to increase the photocatalytic regeneration performance, and experimental results show that the synthesized composite material regains above 97% of its adsorption capacity for 5 cycles of regeneration and readsorption. Overall, the results of this study demonstrate potential for the development of inorganic multifunctional adsorbents that can harness a variety of chemical reactions without the loss of adsorptivity over long-term use.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Health and Environmental Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE