Effects of Sulfuric Acid Treatment on the Performance of Ga-Al(2)O(3)for the Hydrolytic Decomposition of 1,1,1,2-Tetrafluoroethane (HFC-134a)
- Authors
- Kim, Min-Jae; Kim, Yeonjin; Youn, Jae-Rang; Choi, Il-Ho; Hwang, Kyung-Ran; Kim, Seung Gon; Park, Young-Kwon; Moon, Seung-Hyun; Lee, Ki Bong; Jeon, Sang Goo
- Issue Date
- 7월-2020
- Publisher
- MDPI
- Keywords
- 1; 1; 1; 2-tetrafluoroethane (HFC-134a); chlorofluorocarbon; catalytic decomposition; Ga-Al2O3; Lewis acid site
- Citation
- CATALYSTS, v.10, no.7
- Indexed
- SCIE
SCOPUS
- Journal Title
- CATALYSTS
- Volume
- 10
- Number
- 7
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/54853
- DOI
- 10.3390/catal10070766
- ISSN
- 2073-4344
- Abstract
- HFC-134a, one of the representative hydrofluorocarbons (HFCs) used as a coolant gas, is a known greenhouse gas with high global warming potential. Catalytic decomposition is considered a promising technology for the removal of fluorinated hydrocarbons. However, systematic studies on the catalytic decomposition of HFC-134a are rare compared to those for other fluorinated hydrocarbon gases. In this study, Ga-Al(2)O(3)and S/Ga-Al(2)O(3)catalysts were prepared and the change in their properties post-acid treatment was investigated by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), temperature-programmed desorption of ammonia (NH3-TPD), in situ Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The S/Ga-Al(2)O(3)catalyst achieved a much higher HFC-134a conversion than Ga-Al2O3, which was ascribed to the promotional effect of the sulfuric acid treatment on the Lewis acidity of the catalyst surface, as confirmed by NH3-TPD. Furthermore, the effect of hydrogen fluoride (HF) gas produced by HFC-134a decomposition on the catalyst was investigated. The S/Ga-Al(2)O(3)maintained a more stable and higher HFC-134a conversion than Ga-Al2O3. Combining the results of the stability test and characterization, it was established that the sulfuric acid treatment not only increased the acidity of the catalyst but also preserved the partially reduced Ga species.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.