Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fine regulation of crystallisation tendency to optimize the BHJ nanostructure and performance of polymer solar cells

Authors
Deng, MinXu, XiaopengLee, Young WoongEricsson, Leif K. E.Moons, EllenWoo, Han YoungLi, YingYu, LiyangPeng, Qiang
Issue Date
28-Jun-2020
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.12, no.24, pp.12928 - 12941
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
Volume
12
Number
24
Start Page
12928
End Page
12941
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/54964
DOI
10.1039/d0nr00698j
ISSN
2040-3364
Abstract
Optimizing the nanostructure of the active layer of polymer solar cells (PSCs) is one of the main challenges to achieve high device performances. The phase separation of the donor polymer and molecular acceptor within the bulk heterojunction (BHJ) layer is often driven by the crystallisation of the acceptor molecules. Hence, a suitable crystallisation tendency of the chosen acceptor is ultimately important. In this work, we identified melting temperature as an indicator for the crystallisation tendency and introduced extended fused-aromatic rings to the end groups of the nonfullerene acceptor molecule to enhance the intermolecular binding energy as well as its crystallisation tendency. The crystallinity, crystal regularity and average crystal size were significantly increased for those molecules with larger fused end groups. The devices containing molecule IDTTC with two fused thiophene rings, which displayed intermediate crystallisation tendency, were found to possess an optimized phase separation scale, balanced hole/electron mobility and highest device performances with the fill factor as high as 73.2% and a power conversion efficiency of 13.49%. With the above observations, we established a new route and paradigm to adjust the crystallisation tendency and BHJ nanostructure of nonfullerene acceptor molecules, thus enhancing the device performances through molecular engineering.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE