Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crystal structure and piezoelectric characteristics of various phases near the triple-point composition in PZ-PT-PNN system

Authors
Lee, Tae-GonKim, Sun-WooKim, Eun-JiLee, Sang JinHwang, Hyun-GyuHong, Youn-WooKim, Jeong SeogChae, Keun HwaChoi, Ji-WonKang, Chong-YunNahm, Sahn
Issue Date
5월-2020
Publisher
ELSEVIER SCI LTD
Keywords
Piezoelectricity; Ceramic material; Phase diagram; Nanodomains; Landau theory
Citation
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, v.40, no.54, pp.1947 - 1956
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
Volume
40
Number
54
Start Page
1947
End Page
1956
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56125
DOI
10.1016/j.jeurceramsoc.2019.12.063
ISSN
0955-2219
Abstract
Crystal structures and piezoelectric properties of PbZrO3-PbTiO3-Pb(Ni1/3Nb2/3)O-3 ceramics near the triple point composition, particularly characteristics of the pseudocubic phase, were investigated. The pseudocubic phase, which formed near the triple point composition, disappeared with increase in the PbZrO3 content. The pseudocubic phase had the Pm3m cubic structure. The tetragonal-pseudocubic morphotropic phase boundary (MPB) structure was developed during the tetragonal-to-cubic phase transformation. However, the rhombohedral phase directly transformed to the cubic phase because the structure of pseudocubic phase was similar to the rhombohedral structure. The specimens with pseudocubic phase and the specimens near pseudocubic phase exhibited nano-sized domains and small coercive electric fields, revealing their low domain wall energies. These specimens exhibited second-order ferroelectric-to-paraelectric phase transition and low Curie temperatures, confirming their low domain wall energies. The enhanced dielectric and piezoelectric properties of these specimens could be attributed to their low domain wall energies.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE