Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains

Authors
Qu, LiangqiongZhang, YongqinWang, ShuaiYap, Pew-ThianShen, Dinggang
Issue Date
5월-2020
Publisher
ELSEVIER
Keywords
Image synthesis; Magnetic resonance imaging (MRI); Spatial and wavelet domains
Citation
MEDICAL IMAGE ANALYSIS, v.62
Indexed
SCIE
SCOPUS
Journal Title
MEDICAL IMAGE ANALYSIS
Volume
62
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56168
DOI
10.1016/j.media.2020.101663
ISSN
1361-8415
Abstract
Ultra-high field 7T MRI scanners, while producing images with exceptional anatomical details, are cost prohibitive and hence highly inaccessible. In this paper, we introduce a novel deep learning network that fuses complementary information from spatial and wavelet domains to synthesize 7T T1-weighted images from their 3T counterparts. Our deep learning network leverages wavelet transformation to facilitate effective multi-scale reconstruction, taking into account both low-frequency tissue contrast and high-frequency anatomical details. Our network utilizes a novel wavelet-based affine transformation (WAT) layer, which modulates feature maps from the spatial domain with information from the wavelet domain. Extensive experimental results demonstrate the capability of the proposed method in synthesizing high-quality 7T images with better tissue contrast and greater details, outperforming state-of-the-art methods. (C) 2020 Published by Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE