Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord
- Authors
- Zhang, Jun; Chandrasekaran, Gopalakrishnan; Li, Wenting; Kim, Dong-Young; Jeong, In Young; Lee, So-Hyun; Liang, Ting; Bae, Jin Young; Choi, Isaac; Kang, Hyuno; Maeng, Jin-Soo; Kim, Myeong-Kyu; Lee, Taewon; Park, Seung Woo; Kim, Min Jung; Kim, Hyung-Seok; Ro, Hyunju; Bae, Yong Chul; Park, Hae-Chul; Choi, Eun Young; Choi, Seok-Yong
- Issue Date
- 20-Apr-2020
- Publisher
- NATURE PUBLISHING GROUP
- Citation
- NATURE COMMUNICATIONS, v.11, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- NATURE COMMUNICATIONS
- Volume
- 11
- Number
- 1
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/56294
- DOI
- 10.1038/s41467-020-15248-2
- ISSN
- 2041-1723
- Abstract
- Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies. With respect to maintenance of ependymal motile cilia, plc delta 3a is a target gene of Wnt signaling. Lack of Connexin43 (Cx43), especially its channel function, decreases motile cilia and intercellular Ca2+ wave (ICW) propagation. Genetic ablation of cx43 in zebrafish and mice diminished motile cilia. Finally, Cx43 is also expressed in ECs of the human SC. Taken together, our findings indicate that gap junction mediated ICWs play an important role in the maintenance of ependymal motile cilia, and suggest that the enhancement of functional gap junctions by pharmacological or genetic manipulations may be adopted to ameliorate motile ciliopathy. Ependymal cells are supporting cells in the central nervous system. Here the authors elucidate a signalling axis in zebrafish spinal cord ependymal cells that is important for motile cilia assembly and maintenance, demonstrating that it depends on intercellular propagation of calcium ions via connexin 43.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Biomedical Sciences > 1. Journal Articles
- College of Medicine > ETC > 1. Journal Articles
- Graduate School > Department of Applied Mathematics > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.