Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Controlling the C2+product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst

Authors
Lee, Si YoungChae, Sang YounJung, HyejinLee, Chan WooDang Le Tri NguyenOh, Hyung-SukMin, Byoung KounHwang, Yun Jeong
Issue Date
7-4월-2020
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY A, v.8, no.13, pp.6210 - 6218
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY A
Volume
8
Number
13
Start Page
6210
End Page
6218
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56639
DOI
10.1039/c9ta13173f
ISSN
2050-7488
Abstract
Cu catalysts prepared by modifying bulk Cu foils have achieved high performance for value-added C2+ compounds from electrochemical CO2 reduction (CO2RR) but the transformation of active sites can be affected by the bulk substrate, which make it complex to design the catalyst. Herein, we newly introduce a simple electrospray pyrolysis method to take advantage of a facile wet-chemical synthesis applicable on non-copper substrates, such as a porous carbon paper, and demonstrate highly enhanced selectivity for C2H4 production from CO2RR. The electrosprayed copper oxide on the carbon paper showed uniquely improved C2 selectivity compared with that on the copper substrate. The improved performance is proposed to be related to the presence of Cu mixed state and retention of morphology of the electrosprayed catalyst on the carbon paper, showing the importance of the substrate. In addition, the C2 product selectivity can be tuned by the electrospray synthesis time as it affects the size of the surface nanostructure as well as the porosity of the catalyst, which can provide an effective way to regulate the C2/C1 ratio.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE