Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis

Authors
Choi, Un YungLee, Jae JinPark, AngelaZhu, WeiLee, Hye-RaChoi, Youn JungYoo, Ji-SeungYu, ClaireFeng, PinghuiGao, Shou-JiangChen, ShaochenEoh, HyungjinJung, Jae U.
Issue Date
7-4월-2020
Publisher
NATL ACAD SCIENCES
Keywords
cancer metabolism; proline metabolism; pyrroline-5-carboxylate reductase (PYCR); Kaposi' s sarcoma-associated herpesvirus (KSHV); K1
Citation
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.117, no.14, pp.8083 - 8093
Indexed
SCIE
SCOPUS
Journal Title
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
Volume
117
Number
14
Start Page
8083
End Page
8093
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56641
DOI
10.1073/pnas.1918607117
ISSN
0027-8424
Abstract
Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to bettermimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesis PYCR gene and proline degradation PRODH gene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion of PYCR expression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology and Bioinformatics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE