Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Methylbenzene sensors using Ti-doped NiO multiroom spheres: Versatile tunability on selectivity, response, sensitivity, and detection limit

Authors
Kim, Ki BeomJeong, Seong-YongKim, Tae-HyungKang, Yun ChanLee, Jong-Heun
Issue Date
1-Apr-2020
Publisher
ELSEVIER SCIENCE SA
Keywords
Gas sensor; Oxide semiconductor; Aromatic volatile organic compounds; Methylbenzene; Tenability
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v.308
Indexed
SCIE
SCOPUS
Journal Title
SENSORS AND ACTUATORS B-CHEMICAL
Volume
308
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56681
DOI
10.1016/j.snb.2020.127730
ISSN
0925-4005
Abstract
Pure and Ti-doped NiO multiroom spheres were prepared via ultrasonic spray pyrolysis, and their gas sensing characteristics were investigated. The sensor using 10 at% Ti-doped NiO multiroom spheres exhibited an unprecedented high response (resistance ratio = 337.8) to 1 ppm p-xylene at 350 degrees C, whereas the sensor using pure NiO multiroom spheres exhibited a negligibly low response (1.3). Moreover, the control of the Ti doping and film thickness provided intriguing strategies for tuning the xylene and methylbenzene sensing characteristics, such as the selectivity, response, sensitivity (slope between response and gas concentration), and detection limit. The versatile tunability on gas sensing characteristics was explained by the Ti-doping-induced variation of the oxygen adsorption, mesoporosity, specific surface area, and charge-carrier concentration, as well as the control over the reforming and oxidation of the analyze gases using the multiroom-structured micro-reactors with high catalytic activity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE