Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Shadow extension for ray casting enhances volumetric visualization in real-time 4D-OCT

Authors
Jeong, HyeonseogKim, Hyung-JinHyeon, Min GyuKim, PilunChoi, YoungwoonKim, Beop-Min
Issue Date
1-4월-2020
Publisher
ELSEVIER
Keywords
Optical coherence tomography; Real time volume rendering; GPU accelerated; Advanced rendering
Citation
OPTICS COMMUNICATIONS, v.460
Indexed
SCIE
SCOPUS
Journal Title
OPTICS COMMUNICATIONS
Volume
460
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56683
DOI
10.1016/j.optcom.2020.125237
ISSN
0030-4018
Abstract
Progress in swept source laser technology and graphics processing unit (GPU) have led to the realization of real time four-dimensional optical coherence tomography (4D-OCT). Various rendering algorithms have been introduced for volumetric OCT leading to enhanced spatial comprehension. These algorithms still cannot provide sufficient visual realism. Shadowing is one of the advanced rendering techniques used to provide realistic spatial comprehension for objects in space. We developed and implemented a shadow extension for ray casting for real-time 4D-OCT, using both a swept source (SS)-OCT and spectral domain (SD)-OCT. Our technique builds upon previously developed ray casting techniques, adding an additional shadowing computation. The shadow extension for ray casting yields greater three-dimensionality of objects via self-shadowing, and also improves depth perception of objects. We imaged a beveled needle hovering over a flat surface and found that the positioning of a beveled needle can be accurately determined in relation to the environment. The shadowing algorithm was implemented using texture memory of the GPU, which realized video rendering rate. The complete processing pipeline requires 47 ms with a volume size of 1024 x 256 x 100, with a 100 kHz sweep rate SS-OCT. This new algorithm may enhance interactive surgical guidance during ophthalmic microsurgery.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE