Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application

Authors
Zhang, LeLim, Ee YangLoh, Kai-CheeOk, Yong SikLee, Jonathan T. E.Shen, YeWang, Chi-HwaDai, YanjunTong, Yen Wah
Issue Date
1-Apr-2020
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Thermophilic anaerobic digestion; Bioenergy conversion; Food waste minimization; Biochar amendment; Methanogenic pathways; Pilot-scale application
Citation
ENERGY CONVERSION AND MANAGEMENT, v.209
Indexed
SCIE
SCOPUS
Journal Title
ENERGY CONVERSION AND MANAGEMENT
Volume
209
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56684
DOI
10.1016/j.enconman.2020.112654
ISSN
0196-8904
Abstract
Effectiveness of biochar addition to enhance thermophilic semi-continuous anaerobic digestion (AD) of food waste for methane production was investigated with a focus on dosage and particle size of biochar, pilot-scale application and elucidation of methanogenic pathways. Optimal dosage range of biochar was determined as 7.5 to 15 g per L working volume based on lab-scale batch AD. Effects of biochar with different particle sizes at a model dosage of 15 g/L were evaluated in a semi-continuous AD experiment, results of which showed that all the examined biochars with different particle sizes (< 50 mu m to 3 cm) substantially enhanced the average methane yields (0.465-0.543 L/gVS) compared to control digesters which failed due to overloading (>= 3.04 gVS/L/d). No significant difference in methane yields, however, was observed among digesters with different particle sizes of biochars, except for 1-3 cm. The core reason for this phenomenon was that the biochars with different particle sizes had similar properties (e.g. density, surface area and pore size) and that the floating of large particle size (1-3 cm) of biochar with a density of 847 kg/m(3) was not conducive to microbial growth. Metagenomic analysis was performed to determine the predominant microbial species and to explain the main methanogenic pathways in biochar-amended digesters using 16S rRNA sequencing. In the biochar-amended digester, bacterial phylum Thermotogae containing a major genus of Defluviitoga was selectively enriched with gradual increase of organic loadings, while simultaneously enriched methanogen genera Methanothermobacter and Methanosarcina, which showed a synergy of hydrogenotrophic and acetoclastic methanogenic pathways, jointly enhanced the methane productivity. Both technical feasibility and economic feasibility of adding biochar with simple pretreatment (e.g. smash) were validated in the pilot-scale thermophilic semi-continuous AD operations.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE