Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Splash suppression during wafer wet cleaning through drop penetration across metal meshes and porous fiber mats

Authors
Park, Chan-WooKim, Tae-GunKim, Min-WooAldalbahi, AliEl-Newehy, MohamedYoon, Sam S.
Issue Date
Apr-2020
Publisher
SPRINGER
Keywords
Splash; Drop impact; Wettability; Metal mesh; Metalized fiber mat; Supersonic blowing
Citation
JOURNAL OF VISUALIZATION, v.23, no.2, pp.269 - 285
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF VISUALIZATION
Volume
23
Number
2
Start Page
269
End Page
285
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/56727
DOI
10.1007/s12650-019-00620-2
ISSN
1343-8875
Abstract
Semiconducting silicon wafers were subjected to centrifugal wet cleaning to remove micro-contaminants. The circular wafers were rotated while a cleaning liquid was supplied to the wafer surface. During such a cleaning process, the centrifugal force atomizes the liquid film at the wafer edges, producing drops. These drops travel in the confined chamber, collide with the chamber walls, and form splashed droplets. Thereafter, the splashed droplets return to the wafer, thereby significantly increasing the risk of re-contamination. Given this wafer wet cleaning scenario, we experimentally investigated the trajectories of splashed droplets. We introduced metal mesh filtration and air-blowing techniques to minimize wafer re-contamination by the splashed droplets. The metal mesh decreased the speed of the drops, thus minimizing the intensity of splashing. The droplets were also air-blown with a supersonic stream to deflect the droplets from their trajectories and thus prevent them from reaching the wafer. The optimal air-blowing condition was determined through parametric studies. The metal mesh was electroplated with copper, producing textured surfaces on the mesh wires. In addition, the metal fiber mats were laminated on the metal mesh and the effects of these on splashing were studied. Further, photographs of droplets spreading and splashing over these metal meshes were captured to elucidate their detailed dynamics. Time-series snapshots of drops penetrating the metal meshes were also captured. Graphic abstract
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
College of Engineering (Department of Mechanical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE