Self-adaptive global mine blast algorithm for numerical optimization
- Authors
- Yadav, Anupam; Sadollah, Ali; Yadav, Neha; Kim, J. H.
- Issue Date
- 4월-2020
- Publisher
- SPRINGER LONDON LTD
- Keywords
- Mine blast algorithm; Global optimization; Constrained optimization; Data clustering
- Citation
- NEURAL COMPUTING & APPLICATIONS, v.32, no.7, pp.2423 - 2444
- Indexed
- SCIE
SCOPUS
- Journal Title
- NEURAL COMPUTING & APPLICATIONS
- Volume
- 32
- Number
- 7
- Start Page
- 2423
- End Page
- 2444
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/56806
- DOI
- 10.1007/s00521-019-04009-y
- ISSN
- 0941-0643
- Abstract
- In this article, a self-adaptive global mine blast algorithm (GMBA) is proposed for numerical optimization. This algorithm is designed in a novel way, and a new shrapnel equation is proposed for the exploitation phase of mine blast algorithm. A theoretical study is performed, which proves the convergence of any typical shrapnel piece; a new definition for parameters values is defined based on the performed theoretical studies. The promising nature of newly designed exploitation idea is verified with the help of multiple numerical experiments. A state-of-the-art set of benchmark problems are solved with the proposed GMBA, and the optimization results are compared with seven state-of-the-art optimization algorithms. The experimental results are statistically validated by using Wilcoxon signed-rank test, and time complexity of GMBA is also calculated. It has been justified that the proposed GMBA works as a global optimizer for constrained optimization problems. As an application to the newly developed GMBA, an important data clustering problem is solved on six data clusters and the clustering results are compared with the state-of-the-art optimization algorithms. The promising results claim the proposed GMBA as a strong optimizer for data clustering application.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.