Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum

Authors
Yoo, TaesunKim, Sun-GyunYang, Soo HyunKim, HyunKim, EunjoonKim, Soo Young
Issue Date
12-Mar-2020
Publisher
BMC
Keywords
Autism; PSD-93; Locomotion; Social interaction; Self-grooming; Striatum; Spiny projection Neurons
Citation
MOLECULAR AUTISM, v.11, no.1
Indexed
SCIE
SCOPUS
Journal Title
MOLECULAR AUTISM
Volume
11
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/57296
DOI
10.1186/s13229-020-00324-7
ISSN
2040-2392
Abstract
Background DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. Methods Mice lacking exon 14 of the Dlg2 gene (Dlg2(-/-) mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. Results Dlg2(-/-) mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2(-/-) mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2(-/-) dorsolateral striatum was significantly reduced. Conclusion These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyun photo

Kim, Hyun
Department of Biomedical Sciences
Read more

Altmetrics

Total Views & Downloads

BROWSE