Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells

Authors
Jung, Su-KyoHeo, Jin HyuckOh, Byeong M.Lee, Jong BumPark, Sung-HaYoon, WoojinSong, YunmiYun, HoseopKim, Jong H.Im, Sang HyukKwon, O-Pil
Issue Date
3월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
chirality; electron transporting materials; perovskite solar cells; stereoisomers
Citation
ADVANCED FUNCTIONAL MATERIALS, v.30, no.13
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
30
Number
13
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/57369
DOI
10.1002/adfm.201905951
ISSN
1616-301X
Abstract
A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric-shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non-centrosymmetric molecular packing of asymmetric-shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film-forming ability and a very high lowest phase transition temperature (T-lowest) of 321 degrees C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 +/- 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 degrees C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE