Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells

Authors
Yeom, JiahMa, SeonghoLim, Young-Hee
Issue Date
Mar-2020
Publisher
MDPI
Keywords
autophagy; oxyresveratrol; ER stress; mucin; goblet cell
Citation
ANTIOXIDANTS, v.9, no.3
Indexed
SCIE
SCOPUS
Journal Title
ANTIOXIDANTS
Volume
9
Number
3
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/57378
DOI
10.3390/antiox9030214
ISSN
2076-3921
Abstract
Background: Autophagy is a cell protection system invoked to eliminate the damaged organelles and misfolded proteins that induce various stresses, including endoplasmic reticulum (ER) stress. Autophagy can control mucin secretion in goblet cells. Oxyresveratrol (OXY), an antioxidant, stimulates expression of MUC2. Thus, we investigated the effect of OXY on autophagy and found that OXY-induced autophagy stimulates MUC2 expression in human intestinal goblet cells. Methods: Autophagy-related genes and proteins were examined by quantitative real-time PCR (qPCR) and Western blotting, respectively. Autophagy was assessed by immunocytochemistry (ICC). To analyze the protein expression profiles of OXY-treated LS 174T goblet cells, two-dimensional electrophoresis (2DE) and peptide mass fingerprinting (PMF) were performed. MUC2 expression in cells was evaluated by ICC. Results: OXY significantly increased the expression levels of genes related to autophagy induction, and activated phagosome elongation resulted in the formation of autophagosomes. OXY also activated the ER stress signaling pathway and promoted MUC2 synthesis, which was inhibited by treatment with an autophagy inhibitor. Conclusion: OXY induces autophagy via the ER stress signaling pathway, and OXY-induced autophagy increases MUC2 production in intestinal goblet cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Biosystems and Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LIM, YOUNG HEE photo

LIM, YOUNG HEE
College of Health Sciences (School of Biosystems and Biomedical Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE