Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery

Authors
Yu, Iris K. M.Hanif, AamirTsang, Daniel C. W.Yip, Alex C. K.Lin, Kun-Yi AndrewGao, BinOk, Yong SikPoon, Chi SunShang, Jin
Issue Date
20-2월-2020
Publisher
ELSEVIER
Keywords
Biomass valorisation; Waste management/recycling; Sustainable biorefinery; Platform chemicals; Green catalysts; Glucose isomerisation
Citation
SCIENCE OF THE TOTAL ENVIRONMENT, v.704
Indexed
SCIE
SCOPUS
Journal Title
SCIENCE OF THE TOTAL ENVIRONMENT
Volume
704
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/57619
DOI
10.1016/j.scitotenv.2019.135414
ISSN
0048-9697
Abstract
Efficient conversion of food waste to value-added products necessitates the development of high-performance heterogeneous catalysts. This study evaluated the use of Al2O3 as a low-cost and abundant support material for fabricating Lewis acid catalysts, i.e., through the in-situ doping of Cu, Ni, Co, and Zr into Al2O3 followed by calcination. The characterisation results show that all catalysts were mainly amorphous. In particular, adding the transition metals to the Al2O3 matrix resulted in the increase of acidity and meso-/micro-pores. The catalysts were evaluated in the conversion of glucose, which can be easily derived from starch-rich food waste (e.g., bread waste) via hydrolysis, to fructose in biorefinery. The results indicate that the Ni-doped A(2)O(3) (Al-Ni-C) achieved the highest fructose yield (19 mol%) and selectivity (59 mol%) under heating at 170 degrees C for 20 min, of which the performance falls into the range reported in literature. In contrast, the Zr-doped A(2)O(3) (Al-Zr-C) presented the lowest fructose selectivity despite the highest glucose conversion, meaning that the catalyst was relatively active towards the side reactions of glucose and intermediates. The porosity and acidity, modified via metal impregnation, were deduced as the determinants of the catalytic performance. It is noteworthy that the importance of these parameters may vary in a relative sense and the limiting factor could shift from one parameter to another. Therefore, evaluating physicochemical properties as a whole, instead of the unilateral improvement of a single parameter, is encouraged to leverage each functionality for cost-effectiveness. This study provides insights into the structure-performance relationships to promote advance in catalyst design serving a sustainable food waste biorefinery. (C) 2019 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE