A Two-Stream Symmetric Network with Bidirectional Ensemble for Aerial Image Matching
- Authors
- Park, Jae-Hyun; Nam, Woo-Jeoung; Lee, Seong-Whan
- Issue Date
- 2월-2020
- Publisher
- MDPI
- Keywords
- aerial image; image matching; image registration; end-to-end trainable network; ensemble; gemetric transformation
- Citation
- REMOTE SENSING, v.12, no.3
- Indexed
- SCIE
SCOPUS
- Journal Title
- REMOTE SENSING
- Volume
- 12
- Number
- 3
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/57887
- DOI
- 10.3390/rs12030465
- ISSN
- 2072-4292
- Abstract
- In this paper, we propose a novel method to precisely match two aerial images that were obtained in different environments via a two-stream deep network. By internally augmenting the target image, the network considers the two-stream with the three input images and reflects the additional augmented pair in the training. As a result, the training process of the deep network is regularized and the network becomes robust for the variance of aerial images. Furthermore, we introduce an ensemble method that is based on the bidirectional network, which is motivated by the isomorphic nature of the geometric transformation. We obtain two global transformation parameters without any additional network or parameters, which alleviate asymmetric matching results and enable significant improvement in performance by fusing two outcomes. For the experiment, we adopt aerial images from Google Earth and the International Society for Photogrammetry and Remote Sensing (ISPRS). To quantitatively assess our result, we apply the probability of correct keypoints (PCK) metric, which measures the degree of matching. The qualitative and quantitative results show the sizable gap of performance compared to the conventional methods for matching the aerial images. All code and our trained model, as well as the dataset are available online.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.