Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review

Authors
Palansooriya, Kumuduni NiroshikaShaheen, Sabry M.Chen, Season S.Tsang, Daniel C. W.Hashimoto, YoheyHou, DeyiBolan, Nanthi S.Rinklebe, JoergOk, Yong Sik
Issue Date
1월-2020
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Soil quality; Soil amendment; Bioavailability; Green/sustainable remediation; Toxic metal(loid)
Citation
ENVIRONMENT INTERNATIONAL, v.134
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENT INTERNATIONAL
Volume
134
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/58467
DOI
10.1016/j.envint.2019.105046
ISSN
0160-4120
Abstract
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs. Among these soil amendments, biochar has attracted increased interest over the past few years because of its promising surface properties. Integrated application of appropriate amendments is also recommended to maximize their use efficiency. These amendments can reduce PTE bioavailability in soils through diverse mechanisms such as precipitation, complexation, redox reactions, ion exchange, and electrostatic interaction. However, soil properties such as soil pH, and clay, sesquioxides and organic matter content, and processes, such as sorption/desorption and redox processes, are the key factors governing the amendments' efficacy for PTEs immobilization in soils. Selecting proper immobilizing agents can yield cost-effective remediation techniques and fulfill green and sustainable remediation principles. Furthermore, long-term stability of immobilized PTE compounds and the environmental impacts and cost effectiveness of the amendments should be considered before application.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE