Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Single Image Deraining Using Time-Lapse Data

Authors
Cho, JaehoonKim, SeungryongMin, DongboSohn, Kwanghoon
Issue Date
2020
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Rain; Training data; Task analysis; Convolutional neural networks; Rendering (computer graphics); Training; Feature extraction; Single image deraining; convolutional neural networks (CNNs); time-lapse dataset; dynamic fusion module
Citation
IEEE TRANSACTIONS ON IMAGE PROCESSING, v.29, pp.7274 - 7289
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume
29
Start Page
7274
End Page
7289
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/58923
DOI
10.1109/TIP.2020.3000612
ISSN
1057-7149
Abstract
Leveraging on recent advances in deep convolutional neural networks (CNNs), single image deraining has been studied as a learning task, achieving an outstanding performance over traditional hand-designed approaches. Current CNNs based deraining approaches adopt the supervised learning framework that uses a massive training data generated with synthetic rain streaks, having a limited generalization ability on real rainy images. To address this problem, we propose a novel learning framework for single image deraining that leverages time-lapse sequences instead of the synthetic image pairs. The deraining networks are trained using the time-lapse sequences in which both camera and scenes are static except for time-varying rain streaks. Specifically, we formulate a background consistency loss such that the deraining networks consistently generate the same derained images from the time-lapse sequences. We additionally introduce two loss functions, the structure similarity loss that encourages the derained image to be similar with an input rainy image and the directional gradient loss using the assumption that the estimated rain streaks are likely to be sparse and have dominant directions. To consider various rain conditions, we leverage a dynamic fusion module that effectively fuses multi-scale features. We also build a novel large-scale time-lapse dataset providing real world rainy images containing various rain conditions. Experiments demonstrate that the proposed method outperforms state-of-the-art techniques on synthetic and real rainy images both qualitatively and quantitatively. On the high-level vision tasks under severe rainy conditions, it has been shown that the proposed method can be utilized as a pre-preprocessing step for subsequent tasks.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE