Adversarial learning for mono- or multi-modal registration
- Authors
- Fan, Jingfan; Cao, Xiaohuan; Wang, Qian; Yap, Pew-Thian; Shen, Dinggang
- Issue Date
- 12월-2019
- Publisher
- ELSEVIER
- Keywords
- Deformable image registration; Fully convolutional neural network; Generative adversarial network
- Citation
- MEDICAL IMAGE ANALYSIS, v.58
- Indexed
- SCIE
SCOPUS
- Journal Title
- MEDICAL IMAGE ANALYSIS
- Volume
- 58
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/61391
- DOI
- 10.1016/j.media.2019.101545
- ISSN
- 1361-8415
- Abstract
- This paper introduces an unsupervised adversarial similarity network for image registration. Unlike existing deep learning registration methods, our approach can train a deformable registration network without the need of ground-truth deformations and specific similarity metrics. We connect a registration network and a discrimination network with a deformable transformation layer. The registration network is trained with the feedback from the discrimination network, which is designed to judge whether a pair of registered images are sufficiently similar. Using adversarial training, the registration network is trained to predict deformations that are accurate enough to fool the discrimination network. The proposed method is thus a general registration framework, which can be applied for both mono-modal and multi-modal image registration. Experiments on four brain MRI datasets and a multi-modal pelvic image dataset indicate that our method yields promising registration performance in accuracy, efficiency and generalizability compared with state-of-the-art registration methods, including those based on deep learning. (C) 2019 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.