Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

CMK-5-Based High Energy Density Electrical Double Layer Capacitor for AC Line Filtering

Authors
Ji, NayoungPark, JinwooKim, Woong
Issue Date
12-11월-2019
Publisher
AMER CHEMICAL SOC
Citation
ACS OMEGA, v.4, no.20, pp.18900 - 18907
Indexed
SCIE
SCOPUS
Journal Title
ACS OMEGA
Volume
4
Number
20
Start Page
18900
End Page
18907
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/61900
DOI
10.1021/acsomega.9b03024
ISSN
2470-1343
Abstract
Compact electrical double layer capacitors (EDLCs) can be applied to the AC line filtering process and potentially replace conventional bulky aluminum electrolytic capacitors. However, to realize the AC line filtering application, the energy density of the EDLCs needs to be significantly increased while high power density is maintained. In this work, we demonstrate the EDLCs fabricated with ordered mesoporous carbon, CMK-5, and small amounts of single walled carbon nanotubes (SWNTs), which exhibit the highest areal energy density among various EDLCs reported so far and power performance sufficient for AC line filtering. High energy density of CMK-5/SWNT EDLCs can be attributed to high capacitance arising from the bimodal mesoporosity of CMK-5 and high operation voltage owing to the pores compatible with ion sizes in organic electrolytes. High power density is ascribed to the high electrical conductivity and straight ordered pore structure of CMK-5, enabling facile ion movements. Therefore, the carbon pore structure is one of the critical factors to be controlled for the enhancement of the overall performance of EDLCs for AC line filtering. Our demonstration would greatly contribute to the scientific and technological advancement of AC line filtering EDLCs.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Woong photo

Kim, Woong
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE