Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Wet chemical growth of semiconductor 1-D nanostructure arrays on conductive substrates

Authors
Lee, Joo-WonYoon, Joon-SooKim, Young-MinSung, Yun-Mo
Issue Date
21-10월-2019
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.7, no.39, pp.12019 - 12047
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
7
Number
39
Start Page
12019
End Page
12047
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/62184
DOI
10.1039/c9tc03594j
ISSN
2050-7526
Abstract
One-dimensional nanowire arrays directly grown on substrates have been recognized to be superior to two-dimensional thin films and nanoparticle films since they demonstrate in general single crystallinity, larger surface area, fast charge separation, and good contact with substrates. Accordingly, they provide an accessible way to the development of high performance devices such as photovoltaic cells, sensors, photocatalysts, electrodes, light emitters, etc. Although high-temperature vapor-phase synthesis is the most commonly employed method to produce high-crystallinity and high-density one-dimensional nanostructures with high purity, it is not acceptable in terms of the growing demand for the use of TCO (transparent conducting oxide) glass substrates, cost-effectiveness, and large scale mass production. Also, it is very difficult to control the precursor vapor pressures to meet the stoichiometry of many compound semiconductors through the vapor phase growth. In this context, there is a high need for the development of appropriate and efficient wet-chemical growth methods for one-dimensional nanostructures for a broad range of applications. In this review, we provide an overview of various low-temperature wet chemical synthetic approaches. In each fabrication method, we summarize the brief synthetic routes, microstructures, and the mechanism of anisotropic growth. In addition, the last section introduces various applications of one-dimensional nanostructure arrays. This review provides the current status and prospects of the growth of one-dimensional nanostructure arrays via wet chemical routes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sung, Yun Mo photo

Sung, Yun Mo
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE