Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613

Authors
Park, HongjaeMin, ByoungnamJang, YeongseonKim, JungyeonLipzen, AnnaSharma, AditiAndreopoulos, BillJohnson, JeniferRiley, RobertSpatafora, Joseph W.Henrissat, BernardKim, Kyoung HeonGrigoriev, Igor, VKim, Jae-JinChoi, In-Geol
Issue Date
Oct-2019
Publisher
SPRINGER
Keywords
PAH (polycyclic aromatic hydrocarbon); Mycoremediation; Dentipellis sp; KUC8613; White rot fungus; Genomics; Transcriptomics
Citation
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, v.103, no.19, pp.8145 - 8155
Indexed
SCIE
SCOPUS
Journal Title
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume
103
Number
19
Start Page
8145
End Page
8155
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/62691
DOI
10.1007/s00253-019-10089-6
ISSN
0175-7598
Abstract
The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kyoung Heon photo

Kim, Kyoung Heon
Department of Biotechnology
Read more

Altmetrics

Total Views & Downloads

BROWSE