Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synthesis and characterization of uniform hollow TiO2 nanofibers using electrospun fibrous cellulosic templates for lithium-ion battery electrodes

Authors
Oh, Seung-IkKim, Jae-ChanDar, Mushtaq AhmadKim, Dong-Wan
Issue Date
5-9월-2019
Publisher
ELSEVIER SCIENCE SA
Keywords
Cellulosic templates; Electrospinning; Anatase TiO2; Hollow nanofibers; Lithium-ion batteries
Citation
JOURNAL OF ALLOYS AND COMPOUNDS, v.800, pp.483 - 489
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF ALLOYS AND COMPOUNDS
Volume
800
Start Page
483
End Page
489
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/62903
DOI
10.1016/j.jallcom.2019.06.048
ISSN
0925-8388
Abstract
Owing to its low structural strain and non-toxicity, TiO2 has gained immense attention as a safe electrode material for lithium-ion batteries (LIBs). In this study, we fabricated nanoscale fibrous cellulosic templates via electrospinning. These templates were then used to fabricate one-dimensional hollow TiO2 electrodes by the sol-gel method and subsequent calcination at various temperatures. The TiO2 hollow nanofibers (HNFs) were composed of tiny (5 nm) anatase TiO2 nanoparticles. The nanofibers maintained this particle size and the anatase phase at the calcination temperature up to 400 degrees C. The optimized TiO2 HNFs, when used as the LIB anodes, exhibited a high reversible specific capacity of 152 mA h g(-1) at a current density of 185 mA g(-1) and 81% cyclic retention at the 100th cycle. These excellent electrochemical properties of the nanofibers can be attributed to their optimized phase and unique hollow nanostructure with large surface area, which provided them an efficient electrode/electrolyte contact area and faster ion/electron diffusion. (C) 2019 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE