Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP-supported Co and Ni catalysts

Authors
Han, Geun-HoLee, Min WooPark, SoohyungKim, Ho JoongAhn, Jae-PyoungSeo, Myung-giLee, Kwan-Young
Issue Date
9월-2019
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Keywords
Guaiacol; Hydrodeoxygenation; Reaction pathway; Co/ZrP; Ni/ZrP
Citation
JOURNAL OF CATALYSIS, v.377, pp.343 - 357
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CATALYSIS
Volume
377
Start Page
343
End Page
357
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/63058
DOI
10.1016/j.jcat.2019.07.034
ISSN
0021-9517
Abstract
Guaiacol, a primary chemical derived from lignin, is still an attractive candidate as a cyclical carbon source in the petroleum industry. This work newly introduced Co/ZrP and Ni/ZrP catalysts and examined their activity for guaiacol hydrodeoxygenation (HDO) in a batch reactor at 573 K and under 70 bar of H-2. Their catalytic, surface and textural properties were investigated by XRD, N-2 adsorption-desorption, H-2-TPR, H-2-TPD, NH3-TPD, HAADF-STEM and H-2 -chemisorption. In addition, the overall reaction pathways of guaiacol to cyclohexane on Co/ZrP and Ni/ZrP were proposed. Guaiacol was converted to cyclohexane through two different pathways via two major intermediates: phenol (demethoxylation, PHE route) and 2-methoxycyclohexanol (hydrogenation, 2-M route). Co/ZrP preferred the PHE-route, while Ni/ZrP dominantly favored the 2-M-route, which resulted in a high cyclohexane yield when using Co/ZrP (76%). In this study, an 'intrinsic H-2 supply' was determined to be the main factor for selecting the reaction pathway. Co/ZrP, with a low intrinsic H-2 supply capacity, promoted a less H-2-consuming pathway (PHE route), and Ni/ZrP, with a high intrinsic H-2 supply, favored the more H-2-consuming 2-M route. Likewise, lowering the H-2 pressure (from 70 to 40 bar) could promote the PHE route and increase cyclohexane production (80%). However, the opposite trend was observed when the reaction temperature was reduced from 573 K to 5231<. For both Co/ZrP and Ni/ZrP catalysts, the production of PHE significantly decreased, while the same yield of 2-M was almost maintained. Thus, the pathway preference of Co/ZrP was reversed to the 2-M-route. Guaiacol HDO pathway preference over Co/ZrP and Ni/ZrP catalysts was characterized and the reaction conditions were investigated in this study, which could provide a guideline for effective ways to produce desired chemicals from guaiacol using Co/ZrP and Ni/ZrP. (C) 2019 Elsevier Inc. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE