Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effectively remediating spiramycin from production wastewater through hydrolyzing its functional groups using solid superacid TiO2/SO4

Authors
Yang, WenOk, Yong SikDou, XiaominZhang, YuYang, MinWei, DongbinXu, Peng
Issue Date
8월-2019
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Keywords
Solid superacids; Spiramycin; Antibiotic production wastewater; Pretreatment; Catalytic hydrolysis; Antibacterial potency
Citation
ENVIRONMENTAL RESEARCH, v.175, pp.393 - 401
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL RESEARCH
Volume
175
Start Page
393
End Page
401
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/63642
DOI
10.1016/j.envres.2019.05.037
ISSN
0013-9351
Abstract
Breaking down the structural bonds and eliminating the functional groups are more efficient than destroying the whole molecule in antibiotic production wastewater (APW) pretreatment before further biotreatment. Two sulfated titania (TiO2/SO4) solid superacids, SSA1 and SSA2 were synthesized, characterized and used for hydrolytic pretreatment of spiramycin in APW. Spiramycin removal followed an order of SSA2 > SSA1 > TiO2 approximate to pH = 3 > control. The hydrolytic efficiencies increased at elevated temperature from 25 degrees C to 65 degrees C. The hydrolytic kinetics followed a first-order model and SSA2 performed the fastest. The performances were positively correlated with both the total acidity determined by n-butylamine titration and the strength of acid sites measured by NH3-temperature-programmed desorption (TPD). The residual solution for SSA2 presented the least antibacterial potency and anaerobic inhibition among all treatments. The hydrolyzed product was identified as the m/z 699.4321 fragment using UPLC-Q/TOF-MS, which was formed after losing a functional mycarose moiety from the parent molecular. The solid superacids were effective in selectively eliminating 433 mg/L of spiramycin and the antibacterial potencies of the spiramycin production wastewater, which contained very high concentrations of COD (33,000 mg/L). This hydrolytic method avoids using and handling hazardous and corrosive mineral acids on site. It is attractive as a selective catalytic pretreatment method to cleave antibiotics' functional groups and to reduce its inhibitory effects before sequential biotreatments.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE