Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Weighted graph regularized sparse brain network construction for MCI identification

Authors
Yu, RenpingQiao, LishanChen, MingmingLee, Seong-WhanFei, XuanShen, Dinggang
Issue Date
6월-2019
Publisher
ELSEVIER SCI LTD
Keywords
Graph Laplacian regularization; Sparse representation; Brain functional network; Mild cognitive impairment (MCI)
Citation
PATTERN RECOGNITION, v.90, pp.220 - 231
Indexed
SCIE
SCOPUS
Journal Title
PATTERN RECOGNITION
Volume
90
Start Page
220
End Page
231
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/64858
DOI
10.1016/j.patcog.2019.01.015
ISSN
0031-3203
Abstract
Brain functional networks (BFNs) constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely applied to the analysis and diagnosis of brain diseases, such as Alzheimer's disease and its prodrome, namely mild cognitive impairment (MCI). Constructing a meaningful brain network based on, for example, sparse representation (SR) is the most essential step prior to the subsequent analysis or disease identification. However, the independent coding process of SR fails to capture the intrinsic locality and similarity characteristics in the data. To address this problem, we propose a novel weighted graph (Laplacian) regularized SR framework, based on which BFN can be optimized by considering both intrinsic correlation similarity and local manifold structure in the data, as well as sparsity prior of the brain connectivity. Additionally, the non-convergence of the graph Laplacian in the self-representation model has been solved properly. Combined with a pipeline of sparse feature selection and classification, the effectiveness of our proposed method is demonstrated by identifying MCI based on the constructed BFNs. (C) 2019 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seong Whan photo

Lee, Seong Whan
인공지능학과
Read more

Altmetrics

Total Views & Downloads

BROWSE