Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

CollaboNet: collaboration of deep neural networks for biomedical named entity recognition

Authors
Yoon, WonjinSo, Chan HoLee, JinhyukKang, Jaewoo
Issue Date
29-May-2019
Publisher
BMC
Keywords
NER; Deep learning; Named entity recognition; Text mining
Citation
BMC BIOINFORMATICS, v.20
Indexed
SCIE
SCOPUS
Journal Title
BMC BIOINFORMATICS
Volume
20
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/65363
DOI
10.1186/s12859-019-2813-6
ISSN
1471-2105
Abstract
BackgroundFinding biomedical named entities is one of the most essential tasks in biomedical text mining. Recently, deep learning-based approaches have been applied to biomedical named entity recognition (BioNER) and showed promising results. However, as deep learning approaches need an abundant amount of training data, a lack of data can hinder performance. BioNER datasets are scarce resources and each dataset covers only a small subset of entity types. Furthermore, many bio entities are polysemous, which is one of the major obstacles in named entity recognition.ResultsTo address the lack of data and the entity type misclassification problem, we propose CollaboNet which utilizes a combination of multiple NER models. In CollaboNet, models trained on a different dataset are connected to each other so that a target model obtains information from other collaborator models to reduce false positives. Every model is an expert on their target entity type and takes turns serving as a target and a collaborator model during training time. The experimental results show that CollaboNet can be used to greatly reduce the number of false positives and misclassified entities including polysemous words. CollaboNet achieved state-of-the-art performance in terms of precision, recall and F1 score.ConclusionsWe demonstrated the benefits of combining multiple models for BioNER. Our model has successfully reduced the number of misclassified entities and improved the performance by leveraging multiple datasets annotated for different entity types. Given the state-of-the-art performance of our model, we believe that CollaboNet can improve the accuracy of downstream biomedical text mining applications such as bio-entity relation extraction.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Jae woo photo

Kang, Jae woo
Department of Computer Science and Engineering
Read more

Altmetrics

Total Views & Downloads

BROWSE