Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Trimodally porous N-doped carbon frameworks with an interconnected pore structure as selenium immobilizers for high-performance Li-Se batteries

Authors
Park, Seung-KeunPark, Jin-SungKang, Yun Chan
Issue Date
5월-2019
Publisher
ELSEVIER SCIENCE INC
Keywords
Metal-organic framework; Lithium-selenium batteries; Hierarchically porous materials; N-doped carbon
Citation
MATERIALS CHARACTERIZATION, v.151, pp.590 - 601
Indexed
SCIE
SCOPUS
Journal Title
MATERIALS CHARACTERIZATION
Volume
151
Start Page
590
End Page
601
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/65830
DOI
10.1016/j.matchar.2019.03.032
ISSN
1044-5803
Abstract
Modulating the pore structure of cathode hosts is necessary to achieve high-performance Li-Se batteries with long-term cycling stability and superior rate capability. In this study, we demonstrate a novel strategy for the fabrication of trimodally porous N-doped carbon frameworks with an interconnected network as efficient cathode hosts for Li-Se batteries. This strategy utilizes the carbonization of SiO2/polyvinylpyrrolidone/Zn-based metal-organic framework mixtures and subsequent chemical etching of SiO2. During the carbonization process, the strong interaction between polyvinylpyrrolidone and metal-organic framework polyhedrons modulates the pore structures of the carbon hosts, leading to the formation of mesoporous carbon cages with microporous shell in the structures, rather than microporous polyhedra. In addition, SiO2 etching forms a macroporous "inverse opal" structure. This unique trimodal pore structure provides ample space for loading Se into the small-size pores and facilitates penetration of the electrolyte deep inside the cathode through the large-size pores. Thus, the Se containing trimodally porous N-doped carbon frameworks deliver high discharge capacities (529 and 463 mA h g(-1) at the 2nd and 300th cycle, respectively, at 0.5C) and exhibit excellent rate capability (235 mA h g(-1) at 10.0C).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE