Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of biochars pyrolyzed in N-2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

Authors
Igalavithana, Avanthi DeshaniKim, Kyoung-HoJung, Jong-MinHeo, Hye-SookKwon, Eilhann E.Tack, Filip M. G.Tsang, Daniel C. W.Jeon, Young JaeOk, Yong Sik
Issue Date
May-2019
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Bacterial diversity; Community structure; Charcoal; Engineered biochar; Potentially toxic element
Citation
ENVIRONMENT INTERNATIONAL, v.126, pp.791 - 801
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENT INTERNATIONAL
Volume
126
Start Page
791
End Page
801
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/65859
DOI
10.1016/j.envint.2019.02.061
ISSN
0160-4120
Abstract
Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N-2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE