Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis

Authors
Liu, MingxiaZhang, JunAdeli, EhsanShen, Dinggang
Issue Date
5월-2019
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Anatomical landmark; brain disease diagnosis; classification; convolutional neural network (CNN); regression
Citation
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.66, no.5, pp.1195 - 1206
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume
66
Number
5
Start Page
1195
End Page
1206
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/65930
DOI
10.1109/TBME.2018.2869989
ISSN
0018-9294
Abstract
In the field of computer-aided Alzheimer's disease (AD) diagnosis, jointly identifying brain diseases and predicting clinical scores using magnetic resonance imaging (MRI) have attracted increasing attention since these two tasks are highly correlated. Most of existing joint learning approaches require hand-crafted feature representations for MR images. Since hand-crafted features of MRI and classification/regression models may not coordinate well with each other, conventional methods may lead to sub-optimal learning performance. Also, demographic information (e.g., age, gender, and education) of subjects may also be related to brain status, and thus can help improve the diagnostic performance. However, conventional joint learning methods seldom incorporate such demographic information into the learning models. To this end, we propose a deep multi-task multi-channel learning (DM2 L) framework for simultaneous brain disease classification and clinical score regression, using MRI data and demographic information of subjects. Specifically, we first identify the discriminative anatomical landmarks from MR images in a data-driven manner, and then extract multiple image patches around these detected landmarks. We then propose a deep multi-task multi-channel convolutional neural network for joint classification and regression. Our DM2 L framework can not only automatically learn discriminative features for MR images, but also explicitly incorporate the demographic information of subjects into the learning process. We evaluate the proposed method on four large multi-center cohorts with 1984 subjects, and the experimental results demonstrate that DM2 L is superior to several state-of-the-art joint learning methods in both the tasks of disease classification and clinical score regression.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE