Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy

Authors
Lee, Min-HoKwon, O-YeonKim, Yong-JeongKim, Hong-KyungLee, Young-EunWilliamson, JohnFazli, SiamacLee, Seong-Whan
Issue Date
5월-2019
Publisher
OXFORD UNIV PRESS
Keywords
EEG datasets; brain-computer interface; event-related potential; steady-state visually evoked potential; motor-imagery; OpenBMI toolbox; BCI illiteracy
Citation
GIGASCIENCE, v.8, no.5
Indexed
SCIE
SCOPUS
Journal Title
GIGASCIENCE
Volume
8
Number
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/65933
DOI
10.1093/gigascience/giz002
ISSN
2047-217X
Abstract
Background: Electroencephalography (EEG)-based brain-computer interface (BCI) systems are mainly divided into three major paradigms: motor imagery (MI), event-related potential (ERP), and steady-state visually evoked potential (SSVEP). Here, we present a BCI dataset that includes the three major BCI paradigms with a large number of subjects over multiple sessions. In addition, information about the psychological and physiological conditions of BCI users was obtained using a questionnaire, and task-unrelated parameters such as resting state, artifacts, and electromyography of both arms were also recorded. We evaluated the decoding accuracies for the individual paradigms and determined performance variations across both subjects and sessions. Furthermore, we looked for more general, severe cases of BCI illiteracy than have been previously reported in the literature. Results: Average decoding accuracies across all subjects and sessions were 71.1% (+/- 0.15), 96.7% (+/- 0.05), and 95.1% (+/- 0.09), and rates of BCI illiteracy were 53.7%, 11.1%, and 10.2% for MI, ERP, and SSVEP, respectively. Compared to the ERP and SSVEP paradigms, the MI paradigm exhibited large performance variations between both subjects and sessions. Furthermore, we found that 27.8% (15 out of 54) of users were universally BCI literate, i.e., they were able to proficiently perform all three paradigms. Interestingly, we found no universally illiterate BCI user, i.e., all participants were able to control at least one type of BCI system. Conclusions: Our EEG dataset can be utilized for a wide range of BCI-related research questions. All methods for the data analysis in this study are supported with fully open-source scripts that can aid in every step of BCI technology. Furthermore, our results support previous but disjointed findings on the phenomenon of BCI illiteracy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seong Whan photo

Lee, Seong Whan
인공지능학과
Read more

Altmetrics

Total Views & Downloads

BROWSE