Connectivity differences between consciousness and unconsciousness in non-rapid eye movement sleep: a TMS-EEG study
- Authors
- Lee, Minji; Baird, Benjamin; Gosseries, Olivia; Nieminen, Jaakko O.; Boly, Melanie; Postle, Bradley R.; Tononi, Giulio; Lee, Seong-Whan
- Issue Date
- 26-3월-2019
- Publisher
- NATURE PUBLISHING GROUP
- Citation
- SCIENTIFIC REPORTS, v.9
- Indexed
- SCIE
SCOPUS
- Journal Title
- SCIENTIFIC REPORTS
- Volume
- 9
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/66603
- DOI
- 10.1038/s41598-019-41274-2
- ISSN
- 2045-2322
- Abstract
- The neuronal connectivity patterns that differentiate consciousness from unconsciousness remain unclear. Previous studies have demonstrated that effective connectivity, as assessed by transcranial magnetic stimulation combined with electroencephalography (TMS-EEG), breaks down during the loss of consciousness. This study investigated changes in EEG connectivity associated with consciousness during non-rapid eye movement (NREM) sleep following parietal TMS. Compared with unconsciousness, conscious experiences during NREM sleep were associated with reduced phase-locking at low frequencies (<4 Hz). Transitivity and clustering coefficient in the delta and theta bands were also significantly lower during consciousness compared to unconsciousness, with differences in the clustering coefficient observed in scalp electrodes over parietal-occipital regions. There were no significant differences in Granger-causality patterns in frontal-to-parietal or parietal-to-frontal connectivity between reported unconsciousness and reported consciousness. Together these results suggest that alterations in spectral and spatial characteristics of network properties in posterior brain areas, in particular decreased local (segregated) connectivity at low frequencies, is a potential indicator of consciousness during sleep.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Artificial Intelligence > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.