Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Face Liveness Detection Using Thermal Face-CNN with External Knowledge

Authors
Seo, JongwooChung, In-Jeong
Issue Date
10-3월-2019
Publisher
MDPI
Keywords
face liveness detection; convolutional neural network; thermal image; external knowledge
Citation
SYMMETRY-BASEL, v.11, no.3
Indexed
SCIE
SCOPUS
Journal Title
SYMMETRY-BASEL
Volume
11
Number
3
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/66685
DOI
10.3390/sym11030360
ISSN
2073-8994
Abstract
Face liveness detection is important for ensuring security. However, because faces are shown in photographs or on a display, it is difficult to detect the real face using the features of the face shape. In this paper, we propose a thermal face-convolutional neural network (Thermal Face-CNN) that knows the external knowledge regarding the fact that the real face temperature of the real person is 36 similar to 37 degrees on average. First, we compared the red, green, and blue (RGB) image with the thermal image to identify the data suitable for face liveness detection using a multi-layer neural network (MLP), convolutional neural network (CNN), and C-support vector machine (C-SVM). Next, we compared the performance of the algorithms and the newly proposed Thermal Face-CNN in a thermal image dataset. The experiment results show that the thermal image is more suitable than the RGB image for face liveness detection. Further, we also found that Thermal Face-CNN performs better than CNN, MLP, and C-SVM when the precision is slightly more crucial than recall through F-measure.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Department of Computer Convergence Software > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE