Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Highly Selective and Durable Photochemical CO2 Reduction by Molecular Mn(I) Catalyst Fixed on a Particular Dye-Sensitized TiO2 Platform

Authors
Woo, Sung JunChoi, SunghanKim, So-YoenKim, Pil SooJo, Ju HyoungKim, Chul HoonSon, Ho-JinPac, ChyongjinKang, Sang Ook
Issue Date
3월-2019
Publisher
AMER CHEMICAL SOC
Keywords
CO2 to formate conversion; organic-inorganic hybrid systems; molecular catalyst TiO2 immobilization; heterogeneous catalysis; photocatalysis
Citation
ACS CATALYSIS, v.9, no.3, pp.2580 - 2593
Indexed
SCIE
SCOPUS
Journal Title
ACS CATALYSIS
Volume
9
Number
3
Start Page
2580
End Page
2593
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67083
DOI
10.1021/acscatal.8b03816
ISSN
2155-5435
Abstract
A Mn(I)-based hybrid system (OrgD-vertical bar TiO2 vertical bar-MnP) for photocatalytic CO2 reduction is designed to be a coassembly of Mn(4,4'-Y-2-bpy)(CO)(3)Br (MnP; Y = CH2PO (OH)(2)) and (E)-3-[5-(4-(diphenylamino)phenyl)-2,2'-bithiophen-2'-y1]-2-cyanoacrylic acid (OrgD) on TiO2 semiconductor particles. The OrgD-vertical bar TiO2 vertical bar-MnP hybrid reveals persistent photocatalytic behavior, giving high turnover numbers and good product selectivity (HCOO- versus CO). As a typical run, visible-light irradiation of the hybrid catalyst in the presence of 0.1 M electron donor (ED) and 0.001 M LiCIO4 persistently produced HCOO- with a >99% selectivity accompanied by a trace amount of CO; the turnover number (TONformate) reached,similar to 250 after 23 h of irradiation. The product selectivity (HCOO-/CO) was found to be controlled by changing the loading amount of MnP on the TiO2 surface. In situ FTIR analysis of the hybrid during photocatalysis revealed that, at low Mn concentration, the Mn-H monomeric mechanism associated with HCOO- formation is dominant, whereas at high Mn concentration, CO is formed via a Mn-Mn dimer mechanism.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE