Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid

Authors
Lee, HwangLee, Hyun-JeoungKwon, Jung-Hwan
Issue Date
15-2월-2019
Publisher
ELSEVIER
Keywords
Microplastics; Bioaccumulation; Hydrophobic organic chemicals; Diffusion; Additives
Citation
SCIENCE OF THE TOTAL ENVIRONMENT, v.651, pp.162 - 170
Indexed
SCIE
SCOPUS
Journal Title
SCIENCE OF THE TOTAL ENVIRONMENT
Volume
651
Start Page
162
End Page
170
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67624
DOI
10.1016/j.scitotenv.2018.09.068
ISSN
0048-9697
Abstract
One of the most important concerns about marine microplastics is their role in delivery of chemical contaminants to biota. The contribution of microplastic ingestion to the overall uptake of five hydrophobic organic chemicals (HOCs) [alpha-, beta-, and gamma-hexachlorocyclohexanes (HCHs), pentachlorobenzene (PeCB), and hexachlorobenzene (HeCB)] by fish is evaluated in this study. Partition coefficients of all five HOCs between surfactant micelles and simulated intestinal fluid (SIF), as well as between protein and SIF, were experimentally determined. Desorption of model HOCs from a polyethylene film into an artificial gut solution was measured to estimate the fraction of HOCs that can be absorbed from microplastics during their gut retention time. Monte-Carlo simulation (n = 100,000) showed that the uptake via microplastic ingestion will be negligible for HCHs as compared to uptake via other exposure routes, water ventilation and food ingestion. On the other hand, microplastic ingestion might increase the total uptake rate of PeCB and HeCB due to their accelerated desorption from microplastics into the artificial gut solution under the model scenario, assuming an extremely high intake of microplastics. However, the steady-state bioaccumulation factor was predicted to decrease with increasing ingestion of microplastics, showing a dilution effect by microplastic ingestion. Results indicate that HOCs that are close to be at phase equilibriumbetweenmicroplastics and environmental media are not likely to be further accumulated via ingestion of microplastics; this is true even for cases, where ingestion of microplastics contributes significantly to the total uptake of HOCs. Therefore, future studies need to focus on hydrophobic plastic additives that may exist in microplastics at a concentration higher than their equilibrium concentration with water. (C) 2018 Published by Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Jung Hwan photo

Kwon, Jung Hwan
생명과학대학 (환경생태공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE