Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)(3) cathode with superior rate capability and cycling stability for sodium-ion batteries

Authors
Kim, HyeongwooLim, HyojunKim, Hyung-SeokKim, Ki JaeByun, DongjinChoi, Wonchang
Issue Date
Feb-2019
Publisher
TSINGHUA UNIV PRESS
Keywords
polydopamine; N-doped carbon; Na3V2(PO4)(3); cathode; sodium-ion batteries
Citation
NANO RESEARCH, v.12, no.2, pp.397 - 404
Indexed
SCIE
SCOPUS
Journal Title
NANO RESEARCH
Volume
12
Number
2
Start Page
397
End Page
404
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67810
DOI
10.1007/s12274-018-2229-z
ISSN
1998-0124
Abstract
Na superionic conductor (NASICON)-type Na3V2(PO4)(3) (NVP) has been regarded as a promising cathode material for sodium-ion batteries (SIBs). However, NVP suffers from poor cyclability and rate capability because of its intrinsically low electronic conductivity. Herein, we successfully synthesized N-doped carbon-wrapped Na3V2(PO4)(3) (NC@NVP) through the carbonization of polydopamine, which is rich in nitrogen species. The strong adhesion properties of the polydopamine lead to effective and homogeneous wrapping of NVP particles, and it is further turned into a conductive N-doped carbon network itself, providing facile diffusion of electrons and Na+ ions during battery operation. NC@NVP displays remarkable electrochemical performance, even under harsh operating conditions, such as a high rate capability (discharge capacity of 70.88, 49.21 mAhg(-1) at 50 and 100 C), long-term cycling stability (capacity retention of 94.77% over 1,000 cycles at 20 C), and high-temperature cycling (capacity retention of 92.0% after 500 cycles at 60 degrees C).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher BYUN, Dong Jin photo

BYUN, Dong Jin
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE