Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Compositional data analysis and geochemical modeling of CO2-water-rock interactions in three provinces of Korea

Authors
Kim, Seong HeeChoi, Byoung-YoungLee, GyeminYun, Seong-TaekKim, Soon-Oh
Issue Date
2월-2019
Publisher
SPRINGER
Keywords
CO2-rich spring water; CO2-water-rock interaction; Compositional data analysis; Equilibrium phase modeling; Geological CO2 storage
Citation
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, v.41, no.1, pp.357 - 380
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
Volume
41
Number
1
Start Page
357
End Page
380
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/67843
DOI
10.1007/s10653-017-0057-9
ISSN
0269-4042
Abstract
The CO2-rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the geochemical evolution pathways of various CSW were simulated via equilibrium phase modeling (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO3 water type, but some samples from the KW area were classified as Na-HCO3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO2, deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150 degrees C for the Ca-HCO3 and Na-HCO3 types of CSW, respectively, in the KW area; 138.9 degrees C for the CB CSW; and 93.0 degrees C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO3-type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO3-type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the geochemical evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO2 after its geological storage and to estimate the stability and security of geologically stored CO2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Earth and Environmental Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher YUN, Seong Taek photo

YUN, Seong Taek
이과대학 (지구환경과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE