Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-Powered Chemical Sensing Driven by Graphene-Based Photovoltaic Heterojunctions with Chemically Tunable Built-In Potentials

Authors
Lee, DonghunPark, HaeliHan, Soo DeokKim, Su HanHuh, WoongLee, Jae YoonKim, Yoon SeokPark, Myung JinPark, Won IlKang, Chong-YunLee, Chul-Ho
Issue Date
11-Jan-2019
Publisher
WILEY-V C H VERLAG GMBH
Keywords
2D materials; chemical sensors; graphene; heterostructures; photovoltaic
Citation
SMALL, v.15, no.2
Indexed
SCIE
SCOPUS
Journal Title
SMALL
Volume
15
Number
2
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/68306
DOI
10.1002/smll.201804303
ISSN
1613-6810
Abstract
Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self-powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built-in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic-driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H-2) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy-efficient sensors, providing an important advancement for future ubiquitous sensing.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE